Cryolaser:

Innovative cryogenic diode laser bars optimized for emerging ultra-high-power laser applications

P. Crump, C. Frevert, H. Wenzel, G. Erbert and G. Tränkle

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

FBH: world-wide recognized technology center

- International center for MMICs and high-power diode lasers
 - covering all competencies: design, epitaxy, wafer process, characterization, qualification
- Full value chain: from design to modules to manufacturing of pilot series
- Successful track record in knowledge and technology transfer of innovative product ideas and technologies:
 - Strategic partnership with industry (Jenoptik, Trumpf, TESAT Spacecom....)
 - ▶ Successful university cooperation model (Technische Uni Berlin, Humboldt Uni Berlin ...)
 - Founder of spin-offs (Jenoptik Diode Lab, eagleyard Photonics, Lumics ...)

FBH: Mission

- Applied research and development on III-V semiconductor devices, circuits and modules for microwave technology and optoelectronics
 - Close cooperation with universities, research institutes and enterprises
 - Technology transfer
 - Customer- and service-focused
 - Part of value chains
 - ▶ Beyond demonstrators: pilot & small-scale series
 - Academic and industrial education & training

Facts & Figures

- Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH)
- Institute within Forschungsverbund Berlin e.V., member of the Leibniz Association
- Located in Berlin, Germany
- Shareholders
 - State of Berlin / Federal Republic of Germany
- Founded in 1992
- ~ 240 Staff (including 125 scientists & PhD students)
- Academic partners include:
 - ▶ Technische Universität Berlin
 - ▶ Humboldt-Universität zu Berlin
 - Goethe-Universität Frankfurt am Main
- Quality assurance
 - ESA-qualified for applications in space
 - Integrated management system (quality, environment, occupational health & safety)

Research program

- Microwave components & systems
 - ▶ GaN FETs & MMICs
 - MMICs for frontends up to 100 GHz
 - ▶ 100+ GHz: THz electronics (InP HBT)
 - Microwave plasmas
- GaN power electronics
 - ▶ FETs & diodes up to 1000 V
- GaAs diode lasers
 - High-power diode lasers (0.63 1.2 μm)
 - ► Hybrid diode laser systems (rgb)
 - Laser sensors & metrology
- GaN LEDs and GaN diode lasers
 - ▶ UV & true blue
- III-V semiconductor technology
 - Epitaxy & process technology
 - Mounting & packaging

Research program

- Microwave components & systems
 - Gan Fets & MMICs
 - MMICs for frontends up to 100 GHz
 - 100+ GHz: THz electronics (InP HBT)
 - Microwave plasmas
- GaN power electronics
 - ▶ FETs & diodes up to 1000 V
- GaAs diode lasers
 - High-power diode lasers (0.63 1.2 μm)
 - Hybrid diode laser systems (rgb)
 - ▶ Laser sensors & metrology
- GaN LEDs and GaN diode lasers
 - ▶ UV & true blue
- III-V semiconductor technology
 - Epitaxy & process technology
 - Mounting & packaging

Research program

- Microwave components & systems
 - GaN FETs & MMICs
 - MMICs for frontends up to 100 GHz
 - 100+ GHz: THz electronics (InP HBT)
 - Microwave plasmas
- GaN power electronics
 - FETs & diodes up to 1000 V

For compact, efficient pulsers?

- GaAs diode lasers
 - High-power diode lasers (0.63 1.2 μm)
 - Hybrid diode laser systems (rgb
 - Laser sensors & metrology
- GaN LEDs and GaN diode lasers
 - ▶ UV & true blue
- III-V semiconductor technology
 - Epitaxy & process technology
 - Mounting & packaging

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Work packages

Performance status

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Work packages

Performance status

Motivation: help enable power generation via HEC-DPSSL

- A new generation of high-energy-class laser systems are in development
 - ► For example, LIFE and HiPER, using LIF as a low-carbon energy source
- Alternative HEC-DPSSL system architectures in preparatory phase
 - ► LIFE using Nd-doped gain media, pumped at ~872nm (~ 100-500µs)
 - ► HiPER using Yb-doped gain media, pumped at ~940nm (~ 1-2ms)
- Improved components needed to reach full performance targets

Challenge: need ultra-high performance diode lasers

- LIF needs diode lasers to deliver high density of "useful photons" at very high efficiency
 - ▶ Diode lasers generate all the optical energy in the system:
 - high efficiency crucial for high "net power out"
 - Solid state lasers must be appropriately pumped ("useful photons"):
 - □ at a precise wavelength (872nm for Nd:YAG, 940nm for Yb:YAG)
 - at sufficiently high power density
- These ultra-high performance sources do not currently exist

Parameter	State of the art QCW Bars	LIFE Targets [4]
Optical power density	> 10 kW/cm ² [1,2]	> 25 kW/cm ²
Power conversion efficiency at the operating point	> 65% [1,3]	> 75%

Massive cost reduction also needed (target: < 0.01 €/W) [4]</p>

[1] A. Kohl *et al.* Proc. SPIE 7835, 78350Q (2010)[3] J. G. Bai *et al.* Proc. SPIE 8241, 82410W (2012)

[2] J Junghans et al. Proc. SPIE 8241, 82410E (2012)

[4] R. Feeler et al. Proc. SPIE 7916, 791608 (2011).

Program goal: step-improvement in diode lasers for LIF

- Goal: develop novel diode laser technology that can fulfil LIF goals
- Approach: Leverage diode temperatures < 0°C to enable performance step-change</p>

Parameter	State of the art QCW Bars	Program goals
Optical power per bar	~ 300W (commercial) [1,2]	> 1.6 kW
	~ 1kW (lab) [3,4]	> 1.0 KVV
Power conversion efficiency at the operating point, η_{E}	> 65% [1,3]	> 80%
Spectral width (95% power)	> 5 nm	< 1 nm
Heatsink temperature	295 K	200K

Cost reduction (€/W) via high power per bar, internal gratings

[1] A. Kohl *et al.* Proc. SPIE 7835, 78350Q (2010)[3] J. G. Bai *et al.* Proc. SPIE 8241, 82410W (2012)

[2] E. Deichsel et al. Proc. SPIE 6876 68760K (2008)

[4] D. Schröder et al. Proc. SPIE 6456, 64560N (2007).

T < 0°C beneficial for solid state lasers (especially Yb)

Higher efficiency and gain for Yb:YAG at 175K

Thermal lensing also strongly reduced

T < 0°C beneficial for solid state lasers (especially Yb)

Higher efficiency and gain for Yb:YAG at 175K

T < 0°C infrastructure potentially acceptable

... provided performance gain is sufficient

... argument also applies to diode laser pump sources

Thermal lensing also strongly reduced

Narrow absorption, so narrow pump spectra needed

Absorption spectrum Narrower at 175K

Pump lasers with small spectral widths boost efficiency

Also substantially easier (lower handling cost) In very large systems

Narrow absorption, so narrow pump spectra needed

Also substantially easier (lower handling cost) In very large systems

Team

Program start: Jan 2012

Confirm suitability for HiPER (Yb)

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

2kW QCW bars plausible - single emitter extrapolation

- State of the art diode laser technology enables very high peak powers
 - ► High quality design and technology essential (low defect densities)
 - Laser facets with high damage thresholds are crucial (facet passivation) [1]
- FBH 100µm stripe single emitters at 975nm demonstrate very high powers [2]:
 - Peak CW power > 20W
 - ▶ Peak QCW power > 30W (100µs, 100Hz)
 - ▶ Reliable CW power to ~ 20W ("proof of concept")
- Consistent with QCW power per bar > 1600 W
 - ► Assuming 1-cm bars with > 80 single emitters

Ferdinand-Braun-Institut

^[1] P. Ressel et al. IEEE Photon. Technol. Lett 17(5) pp. 962-964 (2005)

^[2] P Crump et al. Proc. SPIE 8241, 82410U (2012).

1kW QCW bars demonstrated in lab since 2007

[1] D. Schröder et al. Proc. SPIE 6456, 64560N (2007).

1kW QCW bars demonstrated in lab since 2007

25°C Bars with $\eta_E > 70\%$ obtained in lab since mid 2000

[1] A Knigge et al. Electron, Lett. 41 pp250-251 (2005)

[2] P Crump et al. IEEE PTL 20(16) pp1378-1380 (2008)

Efficiency > 80% plausible – single emitter demonstration

[1] P. Crump et al. Proc. CLEO/QELS, Baltimore USA, p. 1 (2006)

Efficiency > 80% plausible – single emitter demonstration

Challenges:

Heavily optimised for peak efficiency, power low ~ 2.5W/100µm Short cavity lengths, wide far field: not appropriate for 20W/100µm!

Results quoted with package resistance subtracted (few %)

[1] P. Crump et al. Proc. CLEO/QELS, Baltimore USA, p. 1 (2006)

FBH Technology: Low loss gratings inside the diode laser

High power and efficiency demonstrated in DFB-BA at FBH

Spectrum narrowed < 1nm

Conversion efficiency $\eta_E > 60\%$ < 5% reduced c.f. reference devices

Schultz et al., Appl. Phys. Lett. 100, 201115 (2012)

High power and efficiency demonstrated in DFB-BA at FBH

Schultz et al., Appl. Phys. Lett. 100, 201115 (2012)

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

Work Package 1: Device design for efficiency and power

- Design challenges
 - Understand, leverage material changes at 200K
 - ► High efficiency, sustained to high powers
 - Compatible with internal gratings
 - Compatible with long life time
- Novel laser designs in development
 - Promising initial results (no DFB)
 - Optimization to follow
- Design goals: use 200K to enable
 - $\eta_{\rm F}(\text{Peak}) \sim 90\%$
 - η_E(20W/100μm) ~ 85%
 - ▶ $η_E(DFB) > 80\%$

Ferdinand-Braun-Institut

[1] P Crump et al. Proc. SPIE 8241, 82410U (2012).

Work Package 2: Manufacturing of prototypes

- Combine efficient designs with grating technology, wavelength targeting for 200K
- Construct high-fill factor laser bars, as well as single emitters
- Passivate facets (very high damage threshold)
- Package
- Deliver for assessment

First devices completed August 2012

Work Package 3: Characterisation

Development of custom current supply (subcontract Amtron GmbH, Germany)

► Current: 0 - 2000A

► Pulse width: 100µs - 2ms

► Repetition rate: 10 - 20Hz

- Construction of custom test station
 - Passive cooling (circulating fluid)
 - ► T: 200-300K
 - ► Current status: T > 220K (-50°C)
 - Controlled environment
- It. 1 Characterization of prototypes
 - ► "Time= 0" Benchmarking
 - calibration of design
- First testing started September 2012

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

Initial test of 940-nm FBH baseline single emitters to -50°C

- Date shown for 940nm single emitter
 - ► Stripe width here is 90µm
 - ► Bars contain ~ 80x such lasers
 - ▶ QCW test = 400µs 10Hz
 - ► η_E (Peak, 25°C) = 68%
- Efficiency ~ 10% improved at -50°C
 - ► $\eta_{\rm F}$ (Peak) = 78%
- Power scaling at -50°C:
 - ► $10W/100\mu m \sim 800W \text{ bar}, \eta_F = 77\%$
 - ► 20W/100 μ m ~ 1.6kW bar, η_F = 72%

Initial test of 9xx-nm single emitters at T = -50°C

Design target: 940nm at 200K

 η_E (Peak) = 77% at -50°C η_E (10W/100 μ m) = 75%

$$\lambda_{50\%} = 950.6 \text{ nm (6nm)}$$

 $\Delta\lambda_{95\%} = 4.8 \text{ nm}$

Initial test of 88x-nm single emitters at T = -50°C

Design target: 872nm at 200K

 η_E (Peak) = 73% at -50°C η_E (10W/100 μ m) = 71%

$$\lambda_{50\%} = 878 \text{ nm (6nm)}$$

 $\Delta \lambda_{95\%} = 5.0 \text{ nm}$

Initial 25°C Test of FBH "Baseline" Bars: $\eta_E(1kW) = 43\%$

Long cavity and higher efficiency enable > 1kW passively cooled Next: better design, increased fill factor, lower temperatures

Contents

Introduction to the Ferdinand-Braun-Institut (FBH)

Project Cryolaser

Motivation

Technical goals

Plausibility argument

Work packages

Performance status

- HEC-DPSSL systems require higher performance diode laser pumps
 - ▶ LIF-based systems for power generation have the most stringent requirements
- Project "Cryolaser" targets the required step-improvement in performance
 - ▶ Performance improvement to be enabled by customized design for T < 0°C</p>
 - ► Would make use of T < 0°C architecture in discussion for solid state crystals
- Technical goals: QCW diode laser pump bars at 872nm and 940nm
 - ► Strategy: High-risk, high-impact development, targeting performance breakthough
 - Power per bar > 1.6kW at a conversion efficiency of> 80%
 - Spectral width < 1 nm (95% power content)
 </p>
- Program goals are a plausible extrapolation of current diode laser results
 - Performance to be confirmed by testing at LLNL, STFC
- Initial FBH prototype testing started
 - ▶ Bars with 45% fill factor: P_{max} > 1kW at 25°C
 - ► Single emitters at -50°C: $\eta_E > 70\%$ at 10-20W per 100µm (> 1.5 kW/ bar)
- Much to be done!

Thank you for your attention!

Dr. Paul Crump
Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Str. 4
12489 Berlin

Paul.crump@fbh-berlin.de www.fbh-berlin.de

This work is funded by the Leibniz-Association. Funding was awarded based on the SAW competition

Project number: SAW-2012-FBH-2

Topic area: "Particularly innovative and high-risk projects"

